Numerical solution of the system of Fredholm integro-differential equations by the Tau method
نویسندگان
چکیده
The Tau method, produces approximate polynomial solution of differential, integral and integro-differential equations (see [E.l,Ortiz, The Tau method, SIAM J. Numer. Anal. 6 (3) (1969) 480–492; E.l. Ortiz, H. Samara, An operational approach to the Tau method for the numerical solution of non-linear differential equations, Computing 27 (1981) 15–25; S.M. Hosseini, S. Shahmorad, A matrix formulation of the Tau for Fredholm and Volterra linear integro-differential equations, The Korean J. Comput. Appl. Math. 9 (2) (2002) 497–507; S.M. Hosseini, S. Shahmorad, Numerical solution of a class of integro-differential equations by the Tau method with an error estimation, Appl. Math. Comput. 136 (2003) 559–570]). In this paper, we extend the Tau method for the numerical solution of integro-differential equations systems (IDES). We also give a brief description of the structure of the Tau program by the Maple software. An efficient error estimation of the numerical solution of the method is also introduced. Some examples are given to clarify the efficiency and high accuracy of the method. 2004 Elsevier Inc. All rights reserved.
منابع مشابه
Numerical Solution of Fredholm Integro-differential Equations By Using Hybrid Function Operational Matrix of Differentiation
In this paper, first, a numerical method is presented for solving a class of linear Fredholm integro-differential equation. The operational matrix of derivative is obtained by introducing hybrid third kind Chebyshev polynomials and Block-pulse functions. The application of the proposed operational matrix with tau method is then utilized to transform the integro-differential equations to...
متن کاملNUMERICAL SOLUTION OF THE MOST GENERAL NONLINEAR FREDHOLM INTEGRO-DIFFERENTIAL-DIFFERENCE EQUATIONS BY USING TAYLOR POLYNOMIAL APPROACH
In this study, a Taylor method is developed for numerically solving the high-order most general nonlinear Fredholm integro-differential-difference equations in terms of Taylor expansions. The method is based on transferring the equation and conditions into the matrix equations which leads to solve a system of nonlinear algebraic equations with the unknown Taylor coefficients. Also, we test the ...
متن کاملNON-STANDARD FINITE DIFFERENCE METHOD FOR NUMERICAL SOLUTION OF SECOND ORDER LINEAR FREDHOLM INTEGRO-DIFFERENTIAL EQUATIONS
In this article we have considered a non-standard finite difference method for the solution of second order Fredholm integro differential equation type initial value problems. The non-standard finite difference method and the composite trapezoidal quadrature method is used to transform the Fredholm integro-differential equation into a system of equations. We have also developed a numerical met...
متن کاملThe combined reproducing kernel method and Taylor series for solving nonlinear Volterra-Fredholm integro-differential equations
In this letter, the numerical scheme of nonlinear Volterra-Fredholm integro-differential equations is proposed in a reproducing kernel Hilbert space (RKHS). The method is constructed based on the reproducing kernel properties in which the initial condition of the problem is satised. The nonlinear terms are replaced by its Taylor series. In this technique, the nonlinear Volterra-Fredholm integro...
متن کاملConvergence analysis of the sinc collocation method for integro-differential equations system
In this paper, a numerical solution for a system of linear Fredholm integro-differential equations by means of the sinc method is considered. This approximation reduces the system of integro-differential equations to an explicit system of algebraic equations. The exponential convergence rate $O(e^{-k sqrt{N}})$ of the method is proved. The analytical results are illustrated with numerical examp...
متن کاملSolving the fractional integro-differential equations using fractional order Jacobi polynomials
In this paper, we are intend to present a numerical algorithm for computing approximate solution of linear and nonlinear Fredholm, Volterra and Fredholm-Volterra integro-differential equations. The approximated solution is written in terms of fractional Jacobi polynomials. In this way, firstly we define Riemann-Liouville fractional operational matrix of fractional order Jacobi polynomials, the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied Mathematics and Computation
دوره 168 شماره
صفحات -
تاریخ انتشار 2005